top of page
  • X
  • LinkedIn

LEGACY RESEARCH

Fuel, Flammability and Carbon Dynamics

Work Package 2 - Understanding landscape-scale variation in fuels, fire behaviour and fire severity. This research provides fire managers with the tools to predict the types, quantities and moisture content of fuels across the diverse landscapes of NSW

Key Outcome: Increased fuel information for more informed decision-making in fire management


Predicting the behaviour and severity of fires requires detailed information about the different types, amounts, moisture content, and spatial arrangement of fuels across the landscape, besides information on terrain and weather conditions. Fuel properties vary both in space and time as they reflect changes in vegetation composition, structure or productivity, and respond to seasonal weather and climate or recover after fire. This makes it difficult, for example, to predict whether fuels in particular locations will be dry enough to burn during the week ahead, or are of a kind that may generate dangerous fire behaviour and pose particular challenges to firefighters. 


State-wide mapping of fuel properties has been relatively coarse-scale and does not account for the fine-scale, short-term, variation that drives actual fire behaviour or determines the success or failure of hazard reduction burns. Researchers will use combinations of field observations and remote sensing to develop new models for the prediction of landscape-scale variation in fuel types, fuel loads and moisture content across the diverse environments of New South Wales (NSW). 


This will help fire managers to better quantify fire risks for communities, infrastructure, biodiversity and carbon stocks, and provides input for more informed decision-making on prescribed burning and other management measures.


What they did:

  • Collected field observations and remotely sensed data on vegetation and fuels to develop models for the prediction of landscape-scale variation in fuel type and fuel load.

  • Developed spatially explicit methods and models for the monitoring and forecasting of fuel moisture content and associated variation in forest flammability based

  • Used satellite remote sensing to quantify the effects of current fire regimes on the amount of carbon captured and stored in forests.

KEY PUBLICATIONS (ALPHABETICALLY BY LEAD AUTHOR)


  • Barker, J. W., Price, O. F. & Jenkins, M. E. (2021). Patterns of flammability after a sequence of mixed-severity wildfire in dry eucalypt forests of southern Australia. Ecosphere, 12, e03715. https://doi.org/10.1002/ecs2.3715

  • Collins, L., Day-Smith, M. L., Gordon, C. E. & Nolan, R. H. (2023). Exposure to canopy fire reduces the biomass and stability of carbon stored in fire tolerant eucalypt forests. Forest Ecology and Management, 528, 120625. https://doi.org/10.1016/j.foreco.2022.120625

  • Dickman, L. T., Jonko, A. K., Linn, R. R., Altintas, I., Atchley, A. L., Bär, A., Collins, A. D., Dupuy, J.-L., Gallagher, M. R., Hiers, J. K., Hoffman, C. M., Hood, S. M., Hurteau, M. D., Jolly, W. M., Josephson, A., Loudermilk, E. L., Ma, W., Michaletz, S. T., Nolan, R. H., O'brien, J. J., Parsons, R. A., Partelli-Feltrin, R., Pimont, F., Resco De Dios, V., Restaino, J., Robbins, Z. J., Sartor, K. A., Schultz-Fellenz, E., Serbin, S. P., Sevanto, S., Shuman, J. K., Sieg, C. H., Skowronski, N. S., Weise, D. R., Wright, M., Xu, C., Yebra, M. & Younes, N. (2023). Integrating plant physiology into simulation of fire behavior and effects. New Phytologist, 238, 952-970. https://doi.org/10.1111/nph.18770

  • Griebel, A., Boer, M. M., Blackman, C., Choat, B., Ellsworth, D. S., Madden, P., Medlyn, B., Resco de dios, V., Wujeska-Klause, A., Yebra, M., Younes Cardenas, N. & Nolan, R. H. (2023). Specific leaf area and vapour pressure deficit control live fuel moisture content. Functional Ecology, 37, 719-731. https://doi.org/10.1111/1365-2435.14271

  • Griebel, A., Metzen, D., Pendall, E., Nolan, R. H., Clarke, H., Renchon, A. A. & Boer, M. M. (2022). Recovery from Severe Mistletoe Infection After Heat- and Drought-Induced Mistletoe Death. Ecosystems, 25, 1-16. https://doi.org/10.1007/s10021-021-00635-7

  • Losso, A., Challis, A., Gauthey, A., Nolan, R. H., Hislop, S., Roff, A., Boer, M. M., Jiang, M., Medlyn, B. E. & Choat, B. (2022). Canopy dieback and recovery in Australian native forests following extreme drought. Scientific Reports, 12, 21608. https://doi.org/10.1038/s41598-022-24833-y

  • Nolan, R. H., Blackman, C. J., De Dios, V. R., Choat, B., Medlyn, B. E., Li, X., Bradstock, R. A. & Boer, M. M. (2020). Linking Forest Flammability and Plant Vulnerability to Drought. Forests, 11. https://doi.org/10.3390/f11070779

  • Nolan, R. H., Boer, M. M., Collins, L., Resco De Dios, V., Clarke, H., Jenkins, M., Kenny, B. & Bradstock, R. A. (2020). Causes and consequences of eastern Australia's 2019–20 season of mega-fires. Global Change Biology, 26, 1039-1041. https://doi.org/10.1111/gcb.14987

  • Nolan, R. H., Collins, L., Gibson, R. K., Samson, S. A., Rolls, K. T., Milner, K., Medlyn, B. E., Price, O. F., Griebel, A., Choat, B., Jiang, M. & Boer, M. M. (2022). The carbon cost of the 2019–20 Australian fires varies with fire severity and forest type. Global Ecology and Biogeography, 31, 2131-2146. https://doi.org/10.1111/geb.13548

  • Nolan, R. H., Foster, B., Griebel, A., Choat, B., Medlyn, B. E., Yebra, M., Younes, N. & Boer, M. M. (2022). Drought-related leaf functional traits control spatial and temporal dynamics of live fuel moisture content. Agricultural and Forest Meteorology, 319. https://doi.org/10.1016/j.agrformet.2022.108941

  • Nolan, R. H., Gauthey, A., Losso, A., Medlyn, B. E., Smith, R., Chhajed, S. S., Fuller, K., Song, M., Li, X., Beaumont, L. J., Boer, M. M., Wright, I. J. & Choat, B. (2021). Hydraulic failure and tree size linked with canopy die-back in eucalypt forest during extreme drought. New Phytologist, 230, 1354-1365. https://doi.org/10.1111/nph.17298

  • Nolan, R. H., Gibson, R. K., Cirulis, B., Holyland, B., Samson, S. A., Jenkins, M., Penman, T. & Boer, M. M. (2024). Incorporating burn heterogeneity with fuel load estimates may improve fire behaviour predictions in south-east Australian eucalypt forest. International Journal of Wildland Fire, 33. https://doi.org/10.1071/WF22179

  • Nolan, R. H., Hedo, J., Arteaga, C., Sugai, T. & Resco De Dios, V. (2018). Physiological drought responses improve predictions of live fuel moisture dynamics in a Mediterranean forest. Agricultural and Forest Meteorology, 263, 417-427. https://doi.org/10.1016/j.agrformet.2018.09.011

  • Nolan, R. H., Price, O. F., Samson, S. A., Jenkins, M. E., Rahmani, S. & Boer, M. M. (2022). Framework for assessing live fine fuel loads and biomass consumption during fire. Forest Ecology and Management, 504, 119830. https://doi.org/10.1016/j.foreco.2021.119830

  • Nolan, R. H., Rahmani, S., Samson, S. A., Simpson-Southward, H. M., Boer, M. M. & Bradstock, R. A. (2020). Bark attributes determine variation in fire resistance in resprouting tree species. Forest Ecology and Management, 474, 118385. https://doi.org/10.1016/j.foreco.2020.118385

  • Younes, N., Yebra, M., Boer, M. M., Griebel, A. & Nolan, R. H. (2024). A Review of Leaf-Level Flammability Traits in Eucalypt Trees. Fire, 7. https://doi.org/10.3390/fire7060183

Next
Previous
bottom of page